Weak theories of linear algebra
نویسندگان
چکیده
We investigate the theories LA,LAP,∀LAP of linear algebra, which were originally defined to study the question of whether commutativity of matrix inverses has polysize Frege proofs. We give sentences separating quantified versions of these theories, and define a fragment ∃LA of ∀LAP in which we can interpret a weak theory V 1 of bounded arithmetic and carry out polynomial time reasoning about matrices for example, we can formalize the Gaussian elimination algorithm. We show that, even if we restrict our language, ∃LA proves the commutativity of inverses.
منابع مشابه
Weak amenability of (2N)-th dual of a Banach algebra
In this paper by using some conditions, we show that the weak amenability of (2n)-th dual of a Banach algebra A for some $ngeq 1$ implies the weak amenability of A.
متن کامل2n-Weak module amenability of semigroup algebras
Let $S$ be an inverse semigroup with the set of idempotents $E$. We prove that the semigroup algebra $ell^{1}(S)$ is always $2n$-weakly module amenable as an $ell^{1}(E)$-module, for any $nin mathbb{N}$, where $E$ acts on $S$ trivially from the left and by multiplication from the right. Our proof is based on a common fixed point property for semigroups.
متن کاملCommon best proximity points for $(psi-phi)$-generalized weak proximal contraction type mappings
In this paper, we introduce a pair of generalized proximal contraction mappings and prove the existence of a unique best proximity point for such mappings in a complete metric space. We provide examples to illustrate our result. Our result extends some of the results in the literature.
متن کاملLattice of weak hyper K-ideals of a hyper K-algebra
In this note, we study the lattice structure on the class of all weak hyper K-ideals of a hyper K-algebra. We first introduce the notion of (left,right) scalar in a hyper K-algebra which help us to characterize the weak hyper K-ideals generated by a subset. In the sequel, using the notion of a closure operator, we study the lattice of all weak hyper K-ideals of ahyper K-algebra, and we prove a ...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arch. Math. Log.
دوره 44 شماره
صفحات -
تاریخ انتشار 2005